
Front-End Engineer Interview Prepara3on
Guide

This guide was created to prepare you for the challenges you will face in the Front-End Engineer
interview, and the knowledge you must possess to be successful in each step of the interview
process.

Process:
• 5 - 60-Minute Interviews
• 3 to 4 Coding Challenges
• 1 System design challenge
• Total of 10-12 behavioral quesLons that are looking for past examples where you exhibited one

of Amazons 16 Leadership Principles.

Front-End Coding Interviews:

1. Front-End (Data Structures and Algorithms)
2. Front-End (Logical and Maintainable)
3. Front-End (JavaScript, HTML, CSS, Frameworks)
4. Front-End (Problem Solving)

Systems Design Challenge: (See below for details)

What can you expect?

• These interviews will require you to write code in an online code editor. These interviews are structured to
help demonstrate coding skills, code quality and conceptual thinking.

• An important part of these interview is to assess the problem and discuss it with your interviewer.
DemonstraLng how you think and approach the problems is equally important as the end result.

• We understand that the problems are rarely linked to a single soluLon. Please discuss all the possible
soluLons and why the approach selected is the best fit. HighlighLng other soluLons helps the interviewer
understand your thought process.

• As the emphasis is on the best pracLces we encourage all the candidates to test their code. It is best to
avoid bugs, but the interviewer will not compile code so don’t worry about the minor mistakes.

https://www.amazon.jobs/principles

• Our preferred choice of language for Front End Engineering interview is Vanilla JavaScript. A LiveCode link
for the code editor will be a[ached as part of an invitaLon email.

What do we look for?

During these interviews the interviewer will assess your performance on these areas:

• Problem Solving - We’re evaluaLng how you comprehend and explain complex ideas. Are you providing
the reasoning behind a parLcular soluLon?

• Developing and comparing mul3ple solu3ons? Using appropriate data structures? Speaking about space
and Lme complexity?

• Coding - Can you convert soluLons to executable code? Is the code organized and does it have the right
logical structure? Is the HTML you are wriLng semanLc and follow Web Standards?

• Verifica3on - Are you considering a reasonable number of test cases or coming up with a good argument
for why your code is correct?

• Communica3on - Are you asking for requirements and clarity when necessary, or are you just diving into
the code? Don’t forget to ask quesLons.

• Think Big: Is the code you are wriLng going to scale for one or any type of users? Have you considered
accessibility implicaLons? Can your user interact with the applicaLon you have wri[en without the need
for a mouse?

How to prepare?

• Get comfortable with JavaScript. You need to have a clear understanding of variables, funcLons, objects,
arrays, asynchronous control flow, and closures. Check out h[ps://javascript.info/ to refresh your
knowledge.

• Understand the DOM. Front-End Engineers create complex applicaLons with high interacLvity for mulLple
types of users. Study the rendering capaciLes available to you and layout mechanisms available in CSS.
Study common and advanced HTML tags as well as CSS selectors and rules.

• Think about different algorithms and algorithmic techniques (iteraLon, sorLng, divide-and- conquer,
memoizaLon, recursion).

• Think about data structures, parLcularly the ones used most oden (Array, Stack / Queue, Object Hash,
Tree, Set, Map, etc). While the front-end interview doesn’t focus on building them from scratch, we expect
that you can improve UI performance by choosing the appropriate data structures.
You should expect to solve about three small problems in the course of about 45 minutes. When you have
a soluLon, be sure to review it. Make sure that it’s correct, that you’ve considered the edge cases, that it’s
efficient, and that it clearly reflects the ideas that you’re trying to express in your code.

System Design Challenge

What can you expect?

• You will be asked to design a web-scale applicaLon. For example, they might ask you to design Instagram
widget, Type Ahead widget, Infinite scrolling, Carousel Widget.

• Unlike a coding interview quesLon, System Design Interviews are free-form discussions, and there’s no right
or wrong answer. Instead, we are trying to evaluate your ability to hold a conversaLon about the different
aspects of the system and assess the soluLon based on the requirements that might evolve during the
conversaLon.

https://l.facebook.com/l.php?u=https://javascript.info/&h=AT0gCFYLmR0n9WFeGvZ9vtyJYJrSQAuSfgzHyS10H6QVcGT0WnISzH3BtW279CpklU-EfwtYYDb8oUcff2DW3DQxAzR_Jz0c3KsKmit81ruWtma2d_FCvnXeY7qnmaXPaRvcsWdBI6CdijEg_oAE3dETMGe8NHUotPDafDc

• You should drive the conversaLon by asking clarifying quesLons, discussing the pros and cons of various
approaches and describing the uLlity of each component that you propose to use.

• You have clear understanding of the required data that the applicaLon needs and have capacity to design
APIs. You create the data communicaLon contracts between Front and Back End.

• You understand how the Web and the DOM work. You understand and apply concepts like asynchronous
communicaLon, caching, security, session maintenance. You understand and use client-server
communicaLon methods and pick the right technology according to the problem you are solving.

What do we look for?

• Technical Communica3on - Can you arLculate your vision and technical ideas clearly? We are assessing your
ability to communicate your reasoning as well as understand and address feedback from the interviewer.

• Improve upon a design - Think about and review the complex systems you’ve already designed. What would
you change about your approach if you did it all over again? What worked well?

• Explore compeLng soluLons and speak to all their major tradeoffs. Demonstrate that you can make
intelligent decisions about how to balance each of those tradeoffs.

• Scalability: Start with 1 user, 1 server, 1 app but do emphasis on the next scale curve. For eg - When user
base grows to 1 million, what are changes required in your design?

• Adaptability: In the real world, changes to requirements can happen suddenly. We look for engineers who
can rapidly iterate over a new or exisLng soluLon and that can create Web applicaLons that can scale to
mulLple customers.

How to prepare?

• Do some research. Read engineering blogs about approaches that have worked for big companies along the
way. Read about the false-starts too!

• You can pracLce to divide your interview in following areas -

• Understanding the problem and establish the design scope. One of most important skill as an engineer is
to ask the right quesLons, make proper assumpLons, and gather all the informaLon to build the system.
For example - What specific features are we you going to build? How many users are going to use the
system.

• Propose a high-level design and concur with the interviewer. Discuss as many soluLons as you can before
you decide to deep dive. Come up with an iniLal blue print for the design. Treat your interviewer as a
teammate and work together.

• Design and Deep dive. At this step you have already pinned down on the feature you will be elaboraLng
and its scope. Proposed a high level blueprint and Obtained a feedback from the interviewer. Now, You can
work with your interviewer to pick each component one by one and discuss more on each of them.

• In the end, it is good to wrap things up. Go through all the components you have designed and trade-offs
taken during the deep dive phase. It is helpful to recapitulate as soon as a soluLon has been reached in
case you or the interviewer have overseen any requirement needed to complete the system design
quesLon.

Addi3onal Resources:

• Every FEE guide - h[ps://developer.mozilla.org/en-US/

https://developer.mozilla.org/en-US/

• PracLce FEE FAQs - h[ps://bigfrontend.dev/problem, h[ps://css-tricks.com/

• Accessibility guide - h[ps://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g

• Advanced Concepts - h[ps://www.30secondsofcode.org/, h[ps://web.dev/learn/

https://bigfrontend.dev/problem
https://css-tricks.com/
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.30secondsofcode.org/
https://web.dev/learn/

